Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I was born in Guimarães, Portugal, in 1992. I obtained my degree in Informatics Engineering at the University of Minho. In the same institution, I followed up my studies with a Master's degree in Informatics Engineering mainly focused on Distributed Systems and Application's Engineering.

In the first year of my Master's degree, I joined HASLab, a research unit of University of Minho and INESC TEC. Here, I developed my Master's thesis named "Performance Evaluation and Optimization of Apache HBase for Relational Data", which consisted in evaluating the performance a NoSQL database against well-structured data.

Nowadays, I am a Ph.D student of MAP-i Doctoral Programme in Computer Science. My main research interests fall into performance evaluation and scalability analysis.

Interest
Topics
Details

Details

  • Name

    Francisco Teixeira Neves
  • Since

    01st March 2014
  • Nationality

    Portugal
  • Contacts

    +351253604440
    francisco.t.neves@inesctec.pt
001
Publications

2020

Black-box inter-application traffic monitoring for adaptive container placement

Authors
Neves, F; Vilaça, R; Pereira, J;

Publication
Proceedings of the 35th Annual ACM Symposium on Applied Computing

Abstract

2019

Minha: Large-scale distributed systems testing made practical

Authors
Machado, N; Maia, F; Neves, F; Coelho, F; Pereira, J;

Publication
Leibniz International Proceedings in Informatics, LIPIcs

Abstract
Testing large-scale distributed system software is still far from practical as the sheer scale needed and the inherent non-determinism make it very expensive to deploy and use realistically large environments, even with cloud computing and state-of-the-art automation. Moreover, observing global states without disturbing the system under test is itself difficult. This is particularly troubling as the gap between distributed algorithms and their implementations can easily introduce subtle bugs that are disclosed only with suitably large scale tests. We address this challenge with Minha, a framework that virtualizes multiple JVM instances in a single JVM, thus simulating a distributed environment where each host runs on a separate machine, accessing dedicated network and CPU resources. The key contributions are the ability to run off-the-shelf concurrent and distributed JVM bytecode programs while at the same time scaling up to thousands of virtual nodes; and enabling global observation within standard software testing frameworks. Our experiments with two distributed systems show the usefulness of Minha in disclosing errors, evaluating global properties, and in scaling tests orders of magnitude with the same hardware resources. © Nuno Machado, Francisco Maia, Francisco Neves, Fábio Coelho, and José Pereira; licensed under Creative Commons License CC-BY 23rd International Conference on Principles of Distributed Systems (OPODIS 2019).

2018

Falcon: A Practical Log-Based Analysis Tool for Distributed Systems

Authors
Neves, F; Machado, N; Pereira, J;

Publication
48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018

Abstract
Programmers and support engineers typically rely on log data to narrow down the root cause of unexpected behaviors in dependable distributed systems. Unfortunately, the inherently distributed nature and complexity of such distributed executions often leads to multiple independent logs, scattered across different physical machines, with thousands or millions entries poorly correlated in terms of event causality. This renders log-based debugging a tedious, time-consuming, and potentially inconclusive task. We present Falcon, a tool aimed at making log-based analysis of distributed systems practical and effective. Falcon's modular architecture, designed as an extensible pipeline, allows it to seamlessly combine several distinct logging sources and generate a coherent space-time diagram of distributed executions. To preserve event causality, even in the presence of logs collected from independent unsynchronized machines, Falcon introduces a novel happens-before symbolic formulation and relies on an off-the-shelf constraint solver to obtain a coherent event schedule. Our case study with the popular distributed coordination service Apache Zookeeper shows that Falcon eases the log-based analysis of complex distributed protocols and is helpful in bridging the gap between protocol design and implementation. © 2018 IEEE.

2017

DDFlasks: Deduplicated Very Large Scale Data Store

Authors
Maia, F; Paulo, J; Coelho, F; Neves, F; Pereira, J; Oliveira, R;

Publication
Distributed Applications and Interoperable Systems - 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings

Abstract
With the increasing number of connected devices, it becomes essential to find novel data management solutions that can leverage their computational and storage capabilities. However, developing very large scale data management systems requires tackling a number of interesting distributed systems challenges, namely continuous failures and high levels of node churn. In this context, epidemic-based protocols proved suitable and effective and have been successfully used to build DataFlasks, an epidemic data store for massive scale systems. Ensuring resiliency in this data store comes with a significant cost in storage resources and network bandwidth consumption. Deduplication has proven to be an efficient technique to reduce both costs but, applying it to a large-scale distributed storage system is not a trivial task. In fact, achieving significant space-savings without compromising the resiliency and decentralized design of these storage systems is a relevant research challenge. In this paper, we extend DataFlasks with deduplication to design DDFlasks. This system is evaluated in a real world scenario using Wikipedia snapshots, and the results are twofold. We show that deduplication is able to decrease storage consumption up to 63% and decrease network bandwidth consumption by up to 20%, while maintaining a fullydecentralized and resilient design. © IFIP International Federation for Information Processing 2017.

2017

Prepared scan: efficient retrieval of structured data from HBase

Authors
Neves, F; Vilaça, R; Pereira, JO; Oliveira, R;

Publication
Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017

Abstract
The ability of NoSQL systems to scale better than traditional relational databases motivates a large set of applications to migrate their data to NoSQL systems, even without aiming to exploit the provided schema exibility. However, accessing structured data is costly due to such exibility, incurring in a lot of bandwidth and processing unit usage. In this paper, we analyse this cost in Apache HBase and propose a new scan operation, named Prepared Scan, that optimizes the access to data structured in a regular manner by taking advantage of a well-known schema by application. Using an industry standard benchmark, we show that Prepared Scan improves throughput up to 29% and decreases network bandwidth consumption up to 20%. © 2017 ACM.