Details
Name
Fernando FontesCluster
Computer ScienceRole
External Research CollaboratorSince
01st April 2019
Nationality
PortugalCentre
Artificial Intelligence and Decision SupportContacts
+351220402963
fernando.fontes@inesctec.pt
2022
Authors
Fernandes, MCRM; Vinha, S; Paiva, LT; Fontes, FACC;
Publication
Energies
Abstract
2021
Authors
Fernandes, MCRM; Paiva, LT; Fontes, FACC;
Publication
Computational Methods in Applied Sciences
Abstract
An Airborne Wind Energy System (AWES) is a concept to convert wind energy into electricity, which comprises a tethered aircraft connected to a ground station. These systems are capable of harvesting high altitude winds, which are more frequent and more consistent. Among AWES, there are Pumping Kite Generators (PKG) that involve a rigid or flexible kite connected to a motor/generator placed on the ground through a light-weight tether. Such PKG produces electrical power in a cyclical two-phased motion with a traction phase and a retraction phase. During the traction phase, the aim is to maximize power production. This goal is achieved by controlling the kite such that it performs an almost crosswind motion, keeping a low elevation angle in order to maximize the tether tension. During the retraction phase, the tether tension force is minimized by steering the kite while the tether is reeled-in. Such strategy assures that the cyclical two-phased motion has a positive electrical balance at the end of the overall cycle. In a first stage, we solve an optimal control problem to compute the optimal plan for the kite trajectory during the traction phase, maximizing power production. Such trajectory is then used to define a time-independent geometrical path, which in turn is used as the reference path for the path-following control procedure that is developed in a second stage, and for which results are also presented. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
2021
Authors
Lopes, SO; Costa, MFP; Pereira, RMS; Malheiro, MT; Fontes, FACC;
Publication
Computational Methods in Applied Sciences
Abstract
In this work, we study a mathematical model for a smart irrigation system, formulated as an optimal control problem and discretized and transcribed into a nonlinear programming problem using a fine mesh. In order to solve the resulting optimization problem, one needs to use Optimization solvers. Hence, we implemented the proposed mathematical model in AMPL and solved it using the IPOPT solver on the NEOS server (https://neos-server.org/neos/index.html). We also tested the model creating several scenarios. The numerical results shows that the mathematical model produces qualitatively good responses. Moreover the execution times are made in few seconds. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
2021
Authors
Pereira, R; Lopes, S; Costa, MF; Haie, N; Fontes, F;
Publication
Journal of Sustainable Development of Energy, Water and Environment Systems
Abstract
2021
Authors
Uppal, AA; Fernandes, MCRM; Vinha, S; Fontes, FACC;
Publication
ENERGIES
Abstract
An airborne wind energy system (AWES) can harvest stronger wind streams at higher altitudes which are not accessible to conventional wind turbines. The operation of AWES requires a controller for the tethered aircraft/kite module (KM), as well as a controller for the ground station module (GSM). The literature regarding the control of AWES mostly focuses on the trajectory tracking of the KM. However, an advanced control of the GSM is also key to the successful operation of an AWES. In this paper we propose a cascaded control strategy for the GSM of an AWES during the traction or power generation phase. The GSM comprises a winch and a three-phase induction machine (IM), which acts as a generator. In the outer control-loop, an integral sliding mode control (SMC) algorithm is designed to keep the winch velocity at the prescribed level. A detailed stability analysis is also presented for the existence of the SMC for the perturbed winch system. The rotor flux-based field oriented control (RFOC) of the IM constitutes the inner control-loop. Due to the sophisticated RFOC, the decoupled and instantaneous control of torque and rotor flux is made possible using decentralized proportional integral (PI) controllers. The unknown states required to design RFOC are estimated using a discrete time Kalman filter (DKF), which is based on the quasi-linear model of the IM. The designed GSM controller is integrated with an already developed KM, and the AWES is simulated using MATLAB and Simulink. The simulation study shows that the GSM control system exhibits appropriate performance even in the presence of the wind gusts, which account for the external disturbance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.