Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am a PhD student in the MAPi program advised by Professor Fernando Silva and Professor Pedro Ribeiro. My main research interests are in Network Science, Parallel Computing and Data Mining.

Interest
Topics
Details

Details

Publications

2020

FOCAS: Penalising friendly citations to improve author ranking

Authors
Silva, J; Aparicio, D; Ribeiro, P; Silva, F;

Publication
Proceedings of the ACM Symposium on Applied Computing

Abstract
Scientific impact is commonly associated with the number of citations received. However, an author can easily boost his own citation count by (i) publishing articles that cite his own previous work (self-citations), (ii) having co-authors citing his work (co-author citations), or (iii) exchanging citations with authors from other research groups (reciprocated citations). Even though these friendly citations inflate an author's perceived scientific impact, author ranking algorithms do not normally address them. They, at most, remove self-citations. Here we present Friends-Only Citations AnalySer (FOCAS), a method that identifies friendly citations and reduces their negative effect in author ranking algorithms. FOCAS combines the author citation network with the co-authorship network in order to measure author proximity and penalises citations between friendly authors. FOCAS is general and can be regarded as an independent module applied while running (any) PageRank-like author ranking algorithm. FOCAS can be tuned to use three different criteria, namely authors' distance, citation frequency, and citation recency, or combinations of these. We evaluate and compare FOCAS against eight state-of-the-art author ranking algorithms. We compare their rankings with a ground-truth of best paper awards. We test our hypothesis on a citation and co-authorship network comprised of seven Information Retrieval top-conferences. We observed that FOCAS improved author rankings by 25% on average and, in one case, leads to a gain of 46%. © 2020 ACM.

2018

Graphlet-orbit Transitions (GoT): A fingerprint for temporal network comparison

Authors
Aparicio, D; Ribeiro, P; Silva, F;

Publication
PLOS ONE

Abstract

2018

OTARIOS: OpTimizing Author Ranking with Insiders/Outsiders Subnetworks

Authors
Silva, JMB; Aparício, DO; Silva, FMA;

Publication
Studies in Computational Intelligence - Complex Networks and Their Applications VII

Abstract

2017

Extending the Applicability of Graphlets to Directed Networks

Authors
Aparicio, D; Ribeiro, P; Silva, F;

Publication
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Abstract
With recent advances in high-throughput cell biology, the amount of cellular biological data has grown drastically. Such data is often modeled as graphs (also called networks) and studying them can lead to new insights intomolecule-level organization. A possible way to understand their structure is by analyzing the smaller components that constitute them, namely network motifs and graphlets. Graphlets are particularly well suited to compare networks and to assess their level of similarity due to the rich topological information that they offer but are almost always used as small undirected graphs of up to five nodes, thus limiting their applicability in directed networks. However, a large set of interesting biological networks such asmetabolic, cell signaling, or transcriptional regulatory networks are intrinsically directional, and using metrics that ignore edge direction may gravely hinder information extraction. Our main purpose in this work is to extend the applicability of graphlets to directed networks by considering their edge direction, thus providing a powerful basis for the analysis of directed biological networks. We tested our approach on two network sets, one composed of synthetic graphs and another of real directed biological networks, and verified that they were more accurately grouped using directed graphlets than undirected graphlets. It is also evident that directed graphlets offer substantially more topological information than simple graph metrics such as degree distribution or reciprocity. However, enumerating graphlets in large networks is a computationally demanding task. Our implementation addresses this concern by using a state-of-the-art data structure, the g-trie, which is able to greatly reduce the necessary computation. We compared our tool to other state-of-the art methods and verified that it is the fastest general tool for graphlet counting.

2016

A Subgraph-Based Ranking System for Professional Tennis Players

Authors
Aparicio, D; Ribeiro, P; Silva, F;

Publication
Complex Networks VII - Proceedings of the 7th Workshop on Complex Networks, CompleNet 2016, Dijon, France, March 23-25, 2016.

Abstract
This paper introduces a novel ranking system for competitive sports based around the notion of subgraphs. Although the system is targeted specifically to professional tennis it could be applied to any dominance network due to its generality. The results of about 140,000 tennis matches played between Top-100 players are used to create a colored directed network where colors represent different surfaces and edge direction depends on head-to-read results between players. The main contribution of this work is a ranking system which relies on the occurrences of 4-node directed subgraphs and the positions (or orbits) where the players appear on them. Since the concept of orbit is intrinsically connected with node dominance, appearing frequently in dominant orbits indicates that the player himself is dominant. Even in a very sparse network and without any background knowledge on the tournaments or stages of the matches, our proposal is able to extract meaningful rankings which capture the intricate competitive relationships between players from different eras. © Springer International Publishing Switzerland 2016.