Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I was born in Porto, Portugal, in august, 1988. I have received the M.Sc. degree in bioengineering–biomedical engineering from the Engineering Faculty, University of Porto, Porto, Portugal, in 2012, where I am currently working towards the Ph.D. degree in biomedical engineering, on the subject of motor impairment characterization in a rare neurological disease - Transthyretin Familial Amyloid Polyneuropathy. This PhD project is being developed with the guidance of Professor João Paulo Silva Cunha at C-BER.

Interest
Topics
Details

Details

001
Publications

2021

Supporting the Assessment of Hereditary Transthyretin Amyloidosis Patients Based On 3-D Gait Analysis and Machine Learning

Authors
Vilas-Boas, MdC; Rocha, AP; Cardoso, MN; Fernandes, JM; Coelho, T; Cunha, JPS;

Publication
IEEE Transactions on Neural Systems and Rehabilitation Engineering

Abstract

2020

Subject Identification Based on Gait Using a RGB-D Camera

Authors
Rocha, AP; Fernandes, JM; Choupina, HMP; Vilas Boas, MC; Cunha, JPS;

Publication
Advances in Intelligent Systems and Computing

Abstract
Biometric authentication (i.e., verification of a given subject’s identity using biological characteristics) relying on gait characteristics obtained in a non-intrusive way can be very useful in the area of security, for smart surveillance and access control. In this contribution, we investigated the possibility of carrying out subject identification based on a predictive model built using machine learning techniques, and features extracted from 3-D body joint data provided by a single low-cost RGB-D camera (Microsoft Kinect v2). We obtained a dataset including 400 gait cycles from 20 healthy subjects, and 25 anthropometric measures and gait parameters per gait cycle. Different machine learning algorithms were explored: k-nearest neighbors, decision tree, random forest, support vector machines, multilayer perceptron, and multilayer perceptron ensemble. The algorithm that led to the model with best trade-off between the considered evaluation metrics was the random forest: overall accuracy of 99%, class accuracy of 100±Â0%, and F 1 score of 99±Â2%. These results show the potential of using a RGB-D camera for subject identification based on quantitative gait analysis. © 2020, Springer Nature Switzerland AG.

2020

IHandU: A novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery

Authors
Murias Lopes, E; Vilas Boas, MD; Dias, D; Rosas, MJ; Vaz, R; Silva Cunha, JP;

Publication
Sensors (Switzerland)

Abstract
Deep brain stimulation (DBS) surgery is the gold standard therapeutic intervention in Parkinson’s disease (PD) with motor complications, notwithstanding drug therapy. In the intraoperative evaluation of DBS’s efficacy, neurologists impose a passive wrist flexion movement and qualitatively describe the perceived decrease in rigidity under different stimulation parameters and electrode positions. To tackle this subjectivity, we designed a wearable device to quantitatively evaluate the wrist rigidity changes during the neurosurgery procedure, supporting physicians in decision-making when setting the stimulation parameters and reducing surgery time. This system comprises a gyroscope sensor embedded in a textile band for patient’s hand, communicating to a smartphone via Bluetooth and has been evaluated on three datasets, showing an average accuracy of 80%. In this work, we present a system that has seen four iterations since 2015, improving on accuracy, usability and reliability. We aim to review the work done so far, outlining the iHandU system evolution, as well as the main challenges, lessons learned, and future steps to improve it. We also introduce the last version (iHandU 4.0), currently used in DBS surgeries at São João Hospital in Portugal. © 2020 by the authors.

2020

SnapKi—An Inertial Easy-to-Adapt Wearable Textile Device for Movement Quantification of Neurological Patients

Authors
Oliveira, A; Dias, D; Lopes, EM; Vilas Boas, MD; Silva Cunha, JPS;

Publication
Sensors

Abstract
The development of wearable health systems has been the focus of many researchers who aim to find solutions in healthcare. Additionally, the large potential of textiles to integrate electronics, together with the comfort and usability they provide, has contributed to the development of smart garments in this area. In the field of neurological disorders with motor impairment, clinicians look for wearable devices that may provide quantification of movement symptoms. Neurological disorders affect different motion abilities thus requiring different needs in movement quantification. With this background we designed and developed an inertial textile-embedded wearable device that is adaptable to different movement-disorders quantification requirements. This adaptative device is composed of a low-power 9-axis inertial unit, a customised textile band and a web and Android cross application used for data collection, debug and calibration. The textile band comprises a snap buttons system that allows the attachment of the inertial unit, as well as its connection with the analog sensors through conductive textile. The resulting system is easily adaptable for quantification of multiple motor symptoms in different parts of the body, such as rigidity, tremor and bradykinesia assessments, gait analysis, among others. In our project, the system was applied for a specific use-case of wrist rigidity quantification during Deep Brain Stimulation surgeries, showing its high versatility and receiving very positive feedback from patients and doctors.

2020

Clinical 3-D Gait Assessment of Patients With Polyneuropathy Associated With Hereditary Transthyretin Amyloidosis

Authors
Vilas Boas, MD; Rocha, AP; Cardoso, MN; Fernandes, JM; Coelho, T; Cunha, JPS;

Publication
FRONTIERS IN NEUROLOGY

Abstract
Hereditary amyloidosis associated with transthyretin V30M (ATTRv V30M) is a rare and inherited multisystemic disease, with a variable presentation and a challenging diagnosis, follow-up and treatment. This condition entails a definitive and progressive motor impairment that compromises walking ability from near onset. The detection of the latter is key for the disease's diagnosis. The aim of this work is to perform quantitative 3-D gait analysis in ATTRv V30M patients, at different disease stages, and explore the potential of the obtained gait information for supporting early diagnosis and/or stage distinction during follow-up. Sixty-six subjects (25 healthy controls, 14 asymptomatic ATTRv V30M carriers, and 27 symptomatic patients) were included in this case-control study. All subjects were asked to walk back and forth for 2 min, in front of a Kinect v2 camera prepared for body motion tracking. We then used our own software to extract gait-related parameters from the camera's 3-D body data. For each parameter, the main subject groups and symptomatic patient subgroups were statistically compared. Most of the explored gait parameters can potentially be used to distinguish between the considered group pairs. Despite of statistically significant differences being found, most of them were undetected to the naked eye. Our Kinect camera-based system is easy to use in clinical settings and provides quantitative gait information that can be useful for supporting clinical assessment during ATTRv V30M onset detection and follow-up, as well as developing more objective and fine-grained rating scales to further support the clinical decisions.