Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Interest
Topics
Details

Details

Publications

2015

A Low-Power Multi-Tanh OTA with Very Low Harmonic Distortion

Authors
Kianpour, I; Hussain, B; Tavares, VG; Mendonca, HS;

Publication
2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)

Abstract
This paper presents a wide input range, low-power operational transconductance amplifier (OTA) in weak inversion. The OTA is implemented with tanh-triplets differential pairs, degenerated by a composite configuration to augment the input linear range, thus reducing further the harmonic distortion. Using MATLAB, the mismatch factor (A) of a typical multi-tanh triplet has been optimised for minimum harmonic distortion. The OTA is designed in UMC 0.13um CMOS technology with 1.2V supply. Simulations show that the input range can be extended to 300 mV, while keeping the HD3 below -80 dB. The average power consumption is 13nW, with an open loop-gain of 76 dB and a unity gain frequency of 250 Hz. The low harmonic distortion OTA can find potential applications in low-power and long time constant filters.

2015

A Low Power Clocked Integrated-and-Fire Modulator for UWB Applications

Authors
Kianpour, I; Hussain, B; Tavares, VG; Mendonca, HS;

Publication
2015 Conference on Design of Circuits and Integrated Systems (DCIS)

Abstract
An integrate-and-fire modulator (IFM) is designed for power scavenging systems like: Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) sensor tags. The circuit works with a clock in order to be able to be synchronized with microprocessors, which must be used to reconstruct the signal. The modulator is simulated using 130nm CMOS technology and the resulting power consumption is around 14nW at a clock frequency of 10 kHz. The OTA individually dissipates roughly 13nW. Signal reconstruction resulted in a 9.2 ENOB.