Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

002
Publications

2020

Active Fault Diagnosis Method for Vehicles in Platoon Formation

Authors
Lopes, A; Araujo, RE;

Publication
IEEE Transactions on Vehicular Technology

Abstract

2020

Vehicle Lateral Dynamic Identification Method Based on Adaptive Algorithm

Authors
Lopes, A; Araujo, RE;

Publication
IEEE Open Journal of Vehicular Technology

Abstract

2018

An outline of fault-tolerant control system for electric vehicles operating in a platoon

Authors
Lopes, A; Araujo, RE;

Publication
IFIP Advances in Information and Communication Technology

Abstract
High level vehicle automation systems are currently being studied to attenuate highway traffic and energy consumption by applying the concept of platooning, which has gained increased attention due to progresses in the next generation of mobile communication (5G). The introduction of more complex automation systems originates, however, fault entry points that hinders the system safety and resilience. This paper presents an initial control architecture for the electric vehicles platoon from a fault-tolerant control perspective. To achieve a fault-tolerant platooning structure an over-actuated electric vehicle topology is proposed which may allow the implementation of different redundancies. Furthermore, some of the major challenges in the platooning network control system (NCS) are presented and the techniques to overcome these issues are explored. © IFIP International Federation for Information Processing 2018.

2018

A practical comparison of two algorithms for inverter control with virtual inertia emulation

Authors
Barbosa, D; Ramos, J; Rodrigues, J; Lopes, A; Araujo, RE;

Publication
20th Power Systems Computation Conference, PSCC 2018

Abstract
Renewable energy sources are environmentally appealing in electrical power grids. However, distributed energy resources (DER) are typically connected to the grid through converters that do not have the same properties as synchronous generators which have high participation in power generation. Some of these properties like inertial response are important and must not be lost with higher DER penetration. The present paper analyses two converter control algorithms that are capable of emulating inertial response in DER: the Virtual Synchronous Generator control (VSG) and the Synchronverter. Both algorithms are described, implemented and tested in a practical experiment and a comparison of both algorithms is assessed in terms of frequency nadir achieved, settling time and implementation complexity. The findings can give useful insights to help decide which algorithm should be implemented in a future real application. © 2018 Power Systems Computation Conference.

2018

The role of low-voltage-ride-through capability of distributed energy resources for the mitigation of voltage sags in low voltage distribution grids

Authors
Rodrigues, J; Lopes, A; Miranda, L; Gouveia, C; Moreira, C; Pecas Lopes, JP;

Publication
20th Power Systems Computation Conference, PSCC 2018

Abstract
The large scale integration of Distributed Energy Resources (DER) at the Low Voltage (LV) distribution network offers new opportunities for the improvement of power quality and network reliability. Currently, the occurrence of large disturbances at the transmission network causing severe voltage sags at the distribution level could lead to the disconnection of a large share of DER units connected to the LV network, causing a more severe disturbance. In this paper, Low-Voltage-Ride-Through (LVRT) requirements and current support strategies are proposed to mitigate the impact of severe voltage sag at the distribution level for DER units connected to LV network. The impact of adopting the proposed LVRT strategies will be analyzed through simulation and experimentally. A developed in house ESS prototype incorporating the developed LVRT strategies is also presented, and its capacity to comply with the proposed LVRT requirements is demonstrated using an experimental Power-Hardware-in-the-Loop (PHIL) setup. © 2018 Power Systems Computation Conference.